Маленькая "поломка" и огромные риски
"Спусковой крючок" онкологических болезней — мутации на клеточном уровне. В тех или иных клетках что–то "ломается", и они начинают безостановочно делиться. Если иммунитету удастся вовремя "увидеть" испорченные элементы, организм сможет дать "стоп–сигнал" дальнейшему развитию патологического процесса.
Однако клетки–мутанты очень адаптивны и обладают рядом механизмов "маскировки", позволяющих скрываться от иммунного контроля. Зачастую защитные системы организма их не могут даже "увидеть" (отсюда и склонность онкологических процессов к прогрессированию).
Удалить новообразование полностью хирург может, к сожалению, не в каждом случае: многое зависит от структуры опухоли. Иногда после успешно прошедшей операции происходят рецидивы либо обнаруживаются "замаскированные" метастазы. Тогда медицина вынуждена применять лучевой и химиотерапевтический метод лечения, при которых могут страдать нормальные здоровые ткани.
Для некоторых онкопатологий разработаны таргетные (целевые) виды терапии, лекарственные и нелекарственные (таргетные препараты, гипертермия и т.д.). Может быть применима также энергия ядерных реакций.
Когда мир узнал о нейтральных частицах
Более девяноста лет назад, в 1932 году, английский физик Д. Чедвик совершил весьма значимое открытие. Благодаря его исследованиям мир узнал о новой элементарной частице — нейтроне. В отличие от "плюсового" протона и "минусового"» электрона, нейтрон имеет "нулевой" электрический заряд. Отсюда и его название.
Немногим позднее стал известен еще один факт: у ядер бора-10 есть интересная способность — "хватать" тепловые нейтроны и в результате распадаться на ядра гелия-4 и лития-7. Процесс назвали бор–нейтронным захватом.
Важным свойством бор–нейтронного захвата оказалось выделение энергии, которая рассеивается в очень и очень малом радиусе — всего 5-7 микрон, т.е. 0,005-0,007 мм. Это даже меньше, чем размер живой клетки (ее "охват" составляет около 10 микрон, т.е. приблизительно равен 0,01 мм).
Микровзрыв, направленный и безопасный
Прошло совсем немного времени и найденный микроскопический ядерный взрыв предложили задействовать в лечении онкопациента. К данному выводу независимо друг от друга пришли советские и американские исследователи — рентгенолог Г. Лочер и врач А. Качурин. Ведь если получится "транспортировать" бор прямо в новообразование и облучить его нейтронами, то нормальные клетки микровзрывом не "заденет".
В пятидесятые годы прошлого столетия бор-нейтронозахватный метод изучался в Советском Союзе, в Обнинском медико–радиологическом институте, а первые испытания нового вида терапии были проведены в Америке в 1951 г. (для них сконструировали отдельный реактор в Брукхейвенской лаборатории).
"Технические" сложности
Шли годы, исследования продолжались. Но существовавшие в те времена лекарства не могли дать высокую концентрацию бора-10 в клетках–мишенях. А сегодня для "транспортировки" бора в новообразование применяются борфенилаланин и боркаптат натрия, соединения, применяемые для выявления онкопатологий в ходе контрастных МРТ–исследований.
И еще один момент: действенность нового метода доказали испытания, проведенные в ядерных реакторах. Однако стационару или поликлинике нужны все-таки более компактные аппараты. Их создание стало отдельной задачей.
Единственная в мире
Решение смог найти коллектив исследователей в Сибирском отделении Российской Академии наук. В Институте ядерной физики создали и испытали специальную установку на базе линейного ускорителя, снабженного литиевой мишенью, производящей нейтроны. Опытный образец увидел свет почти двадцать лет назад, в 2004 г., а в 2010 г. прошел апробацию в работе с клеточными культурами.
Сегодня это единственный в мире аппарат, генерирующий эпитепловые частицы–нейтроны (с уровнем энергии от 0,5 до 10000 электронвольт) для исследований.
На решение задачи о создании сильного источника нейтронов заданного диапазона (в сравнительно компактном приборе) понадобилось более двух десятилетий, констатирует завлабораторией бор-нейтронозахватной терапии, доктор физматнаук С. Таскаев. Основной элемент в отечественной установке — источник "минусовых" ионов водорода, пучок от которого направляется в ускоритель, где ионы становятся уже "положительными" и разгоняются.
Двигаясь в магнитном поле, они попадают в мишень — диск из меди с напылением из лития. Как только "плюсовые" водородные ионы сталкиваются с литиевыми ядрами, происходит высвобождение нейтронов. Эти ставшие свободными частицы и создают лечебный пучок.
Почему именно литий?
Интересна и сама структура нейтронного генератора. Многие годы существовало мнение, что из металлического лития сделать мишень нельзя. Аргументы "против" были следующими: данный металл мягок и в высокой степени химически активен, а температура его плавления очень мала.
Поэтому для производящих нейтроны систем применялись другие вещества — бериллий-9 и углерод-13. В результате возникала другая сложность: для берилловых и углеродных мишеней мощность пучков заряженных мельчайших частиц должна быть значительно выше…
Впервые на планете литиевую мишень успешно применили отечественные исследователи.
Первые шаги к лечебному процессу
Не так давно институт ядерной физики Сибирского отделения РАН вместе с Новосибирским госуниверситетом провели совместный эксперимент по лечению кошек и собак с онкозаболеваниями (результаты данного проекта были представлены в минувшем 2022 г.). Таких исследований в мире еще не было.
Как сообщил завлабораторией ядерной и инновационной медицины физфака НГУ, кандидат меднаук В. Каныгин, терапию бор–нейтронозахватным методом прошли уже свыше трех десятков домашних питомцев. Изучаемый способ лечения показал хорошие результаты, в том числе для запущенных стадий патологического процесса.
Как пояснил В. Каныгин, внутри новообразования обмен веществ идет быстрее, чем в самом организме. Поэтому в пораженных тканях выше уровень накопления лекарственных веществ, и чем опаснее опухоль, тем лучше справляется с нею новый метод.
Верные друзья человека, как правило, болеют теми же онкопатологиями, что и он. Поэтому проведенный эксперимент можно рассматривать как доклинические испытания, тем более что лечили в рамках исследования только уже заболевших животных. Искусственного формирования новообразований не производилось.
От научных исследований — к медицинской практике
Сегодня бор–нейтронозахватные установки применяет здравоохранение Японии, а Китай и Южная Корея ведут испытания нового метода (причем в китайской больнице в г. Сямынь используется установка, сконструированная совместно с сибирским Институтом ядерной физики и американской компанией).
В нашей стране исследования намечены на середину 2024 г. Планируется, что и доклинические, и клинические испытания проведет онкоцентр имени Н.Н. Блохина. Проверять собираются как саму аппаратуру, так и новые химсоединения для "транспортировки" бора в пораженные клетки. Эти вещества разработаны в нашей стране для замены дорогостоящих зарубежных.
Завершение испытаний предварительно назначено на 2027 год. К 2030 г. метод бор–нейтронозахватной терапии должен стать доступным для пациентов.